HEPARIN SODIUM in 0.9% SODIUM CHLORIDE IV INFUSION

NAME OF THE MEDICINE

Active ingredient: heparin sodium.

Inactive ingredients: sodium chloride, citric acid monohydrate, sodium phosphate–dibasic dodecahydrate (Na₂HPO₄ 12 H₂O) and water for injection (see **Presentation** for composition in detail)

Chemical structure:

![Chemical structure of heparin sodium](image)

DESCRIPTION

Heparin sodium in 0.9% Sodium Chloride IV Infusion is a sterile, nonpyrogenic solution of heparin sodium (BP) standardised for use as an anticoagulant in 0.9% Sodium Chloride Intravenous Infusion buffered with 0.4 mg citric acid monohydrate and 5.8 mg sodium phosphate-dibasic dodecahydrate (Na₂HPO₄ 12 H₂O) per mL to pH range of 5.5 – 8.0. It is supplied in single dose VIAFLEX plastic bag containers for intravenous administration.

Heparin is a heterogenous mixture of variably sulfated polysaccharide chains composed of repeating units of disaccharides, D-glucosamine and L-iduronic acid or D-glucosamine and D-glucuronic acids. It is extracted from porcine intestinal mucosa. Upon complete hydrolysis, it yields a mixture of D-glucosamine, D-glucuronic acid, L-iduronic acid, acetic acid and sulphuric acid. Heparin is strongly acidic because of its content of covalently linked sulfate and carboxylic acid groups. In heparin sodium, the acidic protons of the sulfate units are partially replaced by sodium ions.

Although others may be present, the main sugars occurring in heparin are: (1) α-L-iduronic acid 2-sulfate, (2) 2-deoxy-2-sulfamino-α-D-glucose 6-sulfate, (3) β-D-glucuronic acid, (4) 2-acetamido-2-deoxy-α-D-glucose, and (5) α-L-iduronic acid. These sugars are present in decreasing amounts, usually in the order (2) > (1) > (4) > (3) > (5), and are joined by glycosidic linkages, forming polymers of varying sizes.
PHARMACOLOGY

Mechanism of Action:

Heparin inhibits reactions that lead to the clotting of blood and the formation of fibrin clots both in vitro and in vivo. Heparin acts at multiple sites in the normal coagulation system. Small amounts of heparin in combination with Antithrombin III (heparin cofactor) can inhibit thrombosis by inactivating activated Factor X and inhibiting the conversion of prothrombin to thrombin. Once active thrombosis has developed, larger amounts of heparin can inhibit further coagulation by inactivating thrombin and preventing conversion of fibrinogen to fibrin. Heparin also prevents the formation of a stable fibrin clot by inhibiting the activation of the fibrin stabilising factor.

Bleeding time is usually unaffected by heparin. Clotting time is prolonged by full therapeutic doses of heparin; in most cases it is not measurably affected by low doses of heparin.

Heparin does not have fibrinolytic activity, therefore it will not lyse existing clots.

Clinical trials have not demonstrated the superiority of heparin in the maintenance of catheter patency over fluid not containing anticoagulant medication (eg. normal saline).

INDICATIONS

Heparin Sodium in 0.9% Sodium Chloride Intravenous Infusion is indicated as an anticoagulant in extracorporeal circulation, dialysis procedures and as an aid in the maintenance of catheter patency.

CONTRAINDICATIONS

Heparin sodium should not be used in patients:

With severe thrombocytopenia;

In whom suitable blood coagulation tests – eg. the whole-blood clotting time, partial thromboplastin time etc. – cannot be performed at appropriate intervals (this contraindication refers to full-dose heparin; there is usually no need to monitor coagulation parameters in patients receiving low-dose heparin);

With an uncontrollable active bleeding state (see Precautions), except when this is due to disseminated intravascular coagulation.
PRECAUTIONS

White Clot Syndrome:

It has been reported that patients on heparin may develop new thrombus formation in association with thrombocytopaenia resulting from irreversible aggregation of platelets induced by heparin, the so-called “white clot syndrome”. The process may lead to severe thromboembolic complications like skin necrosis, gangrene of the extremities that may lead to amputation, myocardial infarction, pulmonary embolism, stroke and possible death. Therefore, heparin administration should be promptly discontinued if a patient develops new thrombosis in association with thrombocytopaenia.

Spinal/epidural haematomas:

When neuraxial anaesthesia (epidural/spinal anaesthesia) or spinal puncture is employed, patients anticoagulated or scheduled to be anticoagulated with unfractionated heparin or low molecular weight heparins/heparinoids for prevention of thromboembolic complications are at risk of developing an epidural or spinal haematoma which can result in long-term or permanent paralysis.

The risk of these events is increased by the use of indwelling epidural catheters for administration of analgesia or by the concomitant use of drugs affecting haemostasis such as non-steroidal anti-inflammatory drugs (NSAIDS), platelet inhibitors, or other anticoagulants. The risk also appears to be increased by traumatic or repeated epidural or spinal puncture.

Patients should be frequently monitored for signs and symptoms of neurological impairment. If neurological compromise is noted, urgent treatment is necessary. The Physician should consider the potential benefit versus risk before neuraxial intervention in patient’s anticoagulated or to be anticoagulated for thromboprophylaxis.

Heparin Resistance:

Increased resistance to heparin is frequently encountered in fever, thrombosis, thrombophlebitis, infections with thrombosing tendencies, myocardial infarction, cancer and in post-surgical patients.

Haemorrhage:

Haemorrhage can occur at virtually any site in patients receiving heparin. An unexplained fall in haematocrit, fall in blood pressure, or any other unexplained symptom should lead to serious consideration of haemorrhagic event.

Heparin sodium should be used with extreme caution in disease states in which there is increased danger of haemorrhage. Some of the conditions in which increased danger of haemorrhage exists are:

Cardiovascular: Subacute bacterial endocarditis. Severe hypertension.
Surgical: During and immediately following (a) spinal tap or spinal anaesthesia or (b) major surgery, especially involving the brain, spinal chord or eye.

Haemotologic: Conditions associated with increased bleeding tendencies, such as haemophilia, thrombocytopaenia, and some vascular purpuras.

Gastrointestinal: Ulcerative lesions and continuous tube drainage of the stomach or small intestine.

Other: Menstruation, liver disease with impaired haemostasis.

Coagulation Testing
When heparin sodium is administered in therapeutic amounts, its dosage should be regulated by frequent blood coagulation tests. If the coagulation test is unduly prolonged or if haemorrhage occurs, heparin sodium should be discontinued promptly (see Overdosage).

Thrombocytopaenia
Thrombocytopaenia has been reported to occur in patients receiving heparin with a reported incidence of 0 to 30%. Platelet counts should be obtained at baseline and periodically during heparin administration. Mild thrombocytopaenia (count greater than 100,000/mm3) may remain stable or reverse even if heparin is continued. However, thrombocytopaenia of any degree should be monitored closely. If the count falls below 100,000/mm3 or if recurrent thrombosis develops (see HIT and HITT below), the heparin product should be discontinued. If continued heparin therapy is essential, administration of heparin from a different organ source can be reinstituted with caution.

Heparin-induced Thrombocytopaenia (HIT) and Heparin-induced Thrombocytopaenia and Thrombosis (HITT)
Heparin-induced Thrombocytopenia (HIT) is a serious antibody-mediated reaction resulting from irreversible aggregation of platelets. HIT may progress to the development of venous and arterial thromboses, a condition referred to as Heparin-induced Thrombocytopaenia and Thrombosis (HITT). Thrombotic events may also be the initial presentation of HITT. These serious thromboembolic events include deep vein thrombosis, pulmonary embolism, cerebral vein thrombosis, limb ischaemia, stroke, myocardial infarction, mesenteric thrombosis, renal arterial thrombosis, skin necrosis, gangrene of the extremities that may lead to amputation, and possibly death.

Once HIT or HITT is diagnosed or strongly suspected, all heparin sodium sources (including heparin flushes) should be discontinued and an alternative anticoagulant used. Future use of heparin sodium, especially within 3 to 6 months following the diagnosis of HIT or HITTS, and while patients test positive for HIT antibodies, should be avoided.

Immune-mediated HIT is diagnosed based on clinical findings supplemented by laboratory test confirming the presence of antibodies to heparin sodium, or platelet activation induced by
heparin sodium. A drop in platelet count greater than 50% from baseline is considered indicative of HIT. Platelet counts begin to fall 5 to 10 days after exposure to heparin sodium in heparin-naïve individuals, and reach a threshold by days 7 to 14. In contrast, ‘rapid onset’ HIT can occur very quickly (within 24 hours following heparin sodium initiation), especially in patients with a recent exposure to heparin sodium (ie. previous 3 months). Thrombosis development shortly after documenting thrombocytopaenia is a characteristic finding in almost half of the patients.

Thrombocytopaenia of any degree should be monitored closely. If the platelet counts fall below 100,000/mm³ or if recurrent thrombosis develops, the heparin product should be promptly discontinued and alternative anticoagulants considered if patients require continued anticoagulation.

Delayed Onset of HIT and HITT
HIT and HITT can occur up to several weeks after the discontinuation of heparin therapy. Patients presenting with thrombocytopaenia or thrombosis after discontinuation of heparin should be evaluated for HIT and HITT.

Other
Solutions containing sodium ions should be used with great care in patients with congestive heart failure, severe renal insufficiency, and in clinical states in which there exists oedema with sodium retention. These solutions should also be used with caution in patients receiving corticosteroids or corticotropin.

The intravenous administration of solutions can cause fluid and/or solute overloading resulting in dilution of serum electrolyte concentrations, over-hydration, congested states or pulmonary oedema. The risk of dilutional states is inversely proportional to the electrolyte concentrations and volume of the infusion. The risk of solute overload causing congested states with peripheral and pulmonary oedema is directly proportional to the electrolyte concentrations and volume of the infusion.

Excessive administration of potassium free solutions may result in significant hypokalaemia.

In patients with diminished renal function, administration may result in sodium retention.

Use in Pregnancy (Category C)
Heparin does not cross the placental barrier. Animal reproduction studies have not been conducted with heparin sodium. It is not known whether heparin sodium can cause foetal harm when administered to a pregnant woman or can affect reproduction capacity. Heparin sodium should be given to pregnant women only if clearly needed.

Use in Lactation
Heparin is not excreted in human milk.

Paediatric Use
Safety and effectiveness in paediatric patients has not been established.
Use in the elderly
A higher incidence of bleeding has been reported in patients, particularly women, over 60 years of age (see Precautions, Haemorrhage above). Clinical studies indicate that lower doses of heparin may be indicated in these patients.

Carcinogenicity/ Genotoxicity/ Effects on Fertility
No long-term studies in animals have been performed to evaluate carcinogenic potential of heparin. Also, no reproduction studies in animals have been performed concerning mutagenesis or impairment of fertility.

Effects on Laboratory Tests
Periodic platelet counts; haematocrits, and tests for occult blood in stool are recommended during the entire course of heparin therapy, regardless of the route of administration (see Dosage and Administration)

INTERACTIONS WITH OTHER MEDICINES

Oral anticoagulants:
Heparin sodium may prolong the one-stage prothrombin time. Therefore when heparin sodium is given with dicumarol or warfarin sodium, a period of at least 5 hours after the last intravenous dose, or 24 hours after the last subcutaneous dose should elapse before blood is drawn if a valid prothrombin time is to be obtained.

Platelet Inhibitors:
Drugs such as acetylsalicylic acid, dextran, phenylbutazone, ibuprofen, indomethacin, dipyridamole, hydroxychloroquine and others that interfere with platelet aggregation reactions (the main haemostatic defence of heparinised patients) may induce bleeding and should be used with caution in patients receiving heparin sodium.

Other Interactions:
Digitalis, tetracyclines, nicotine or antihistamines may partially counteract the anticoagulant action of heparin sodium.

Drug/Laboratory Tests Interactions

Hyperaminotransferasaemia:
Significant elevations of aminotransferase (SGOT [S-AST] and SGPT [S-ALT]) levels have occurred in a high percentage of patients (and healthy subjects) who have received heparin. Since aminotransferase determinations are important in the differential diagnosis of myocardial infarction, liver disease and pulmonary emboli, rises that might be caused by drugs (like heparin) should be interpreted with caution.
ADVERSE EVENTS

1. Haemorrhage

Haemorrhage is the chief complication that may result from heparin therapy (see Precautions). An overly prolonged clotting time or minor bleeding during therapy can usually be controlled by withdrawing the drug (see Overdosage). It should be appreciated that gastrointestinal or urinary tract bleeding during anticoagulant therapy may indicate the presence of an underlying occult lesion. Bleeding can occur at any site but certain specific haemorrhage complications may be difficult to detect:

a. Adrenal haemorrhage, with resultant acute adrenal insufficiency, has occurred during anticoagulant therapy. Therefore, such treatment should be discontinued in patients who develop signs and symptoms of acute adrenal haemorrhage and insufficiency. Initiation of corrective therapy should not depend on laboratory confirmation of the diagnosis, since any delay in an acute situation may result in a patient’s death.

b. Ovarian (corpus luteum) haemorrhage developed in a number of women of reproductive age receiving short or long-term anticoagulant therapy. This complication, if unrecognised, may be fatal.

c. Retroperitoneal haemorrhage

2. Local Irritation

Local irritation, erythema, mild pain, haematoma or ulceration may follow deep subcutaneous (intrafat) injection of heparin sodium. These complications are much more common after intramuscular use, and such use is not recommended.

3. Hypersensitivity

General hypersensitivity reactions have been reported, with chills, fever and urticaria as the most usual manifestations, and asthma, rhinitis, lacrimation, headache, nausea and vomiting, and anaphylactoid reactions, including shock, occurring more rarely. Itching and burning, especially on the plantar site of the feet, may occur.

Thrombocytopenia has been reported to occur in patients receiving heparin with a reported incidence of 0 – 30%. While often mild and of no obvious clinical significance, such thrombocytopenia can be accompanied by severe thromboembolic complications such as skin necrosis, gangrene of the extremities that may lead to amputation, myocardial infarction, pulmonary embolism, stroke and possible death (See Precautions, Thrombocytopenia, Heparin-induced Thrombocytopenia (HIT) and Heparin-induced Thrombocytopenia and Thrombosis (HITT)).

Certain episodes of painful, ischaemic, and cyanosed limbs have in the past been attributed to allergic vasospastic reactions. Whether these are in fact identical to the thrombocytopenia-associated complications remains to be determined.
4. Miscellaneous

Osteoporosis following long term administration of high doses of heparin, cutaneous necrosis after systemic administration, suppression of aldosterone synthesis, delayed transient alopecia, priapism, and rebound hyperlipaemia on discontinuation of heparin sodium have also been reported. Significant elevations of aminotransferase (SGOT [S-AST] and SGPT [S-ALT]) levels have occurred in a high percentage of patients (and healthy subjects) who have received heparin.

DOSAGE AND ADMINISTRATION

Heparin sodium is not effective by oral administration and Heparin Sodium and 0.9% Sodium Chloride Injection should not be given orally.

Parenteral drug products should be inspected visually for particulate matter and discolouration prior to administration. Do not administer unless solution is clear and seal is intact. Use of a final filter is recommended during administration of all parenteral solutions, where possible.

Do not use plastic containers in series connections. Such use could result in air embolism due to residual air being drawn from the primary container before administration of the fluid from the secondary container is completed.

To open
Tear overwrap down side at slit and remove solution container. Some opacity of the plastic due to moisture absorption during the sterilization process may be observed. This is normal and does not affect the solution quality or safety. The opacity will diminish gradually. Check for minute leaks by squeezing inner bag firmly. If leaks are found, discard solution as sterility may be impaired. Do not add supplementary medication.

Because dosages of this drug are titrated to response, no additives should be made to Heparin Sodium and 0.9% Sodium Chloride Injection.

Preparation for Administration
1. Suspend container from eyelet support.
2. Remove plastic protector from outlet port at bottom of container.
3. Attach administration set. Refer to complete directions accompanying set.

Use in Extracorporeal Therapy:
The concentration of 2 units/mL will suffice to prevent clotting on initiation of extracorporeal therapy by priming the devices with this solution. NOTE: A proper and effective heparinisation schedule must be initiated in the patient before and maintained throughout the procedures to prevent subsequent clotting and blood path obstruction. The particular manufacturer’s directions for use of the dialyser or other extracorporeal apparatus must be referred to. The direction sheets for the use of therapeutic dosage forms of Heparin must equally be referred to and adjusted to a given patient's condition and response to achieve sustained, effective anticoagulation within clinically safe parameters. Both intermittent and continuous infusion of 5,000, 10,000 or 20,000
units are employed for this purpose and are unrelated to the low dose Heparin in this preparation that is directed at preparing the apparatus for initial use.

Maintenance of Catheter Patency:

Although the rate for infusion of the 2 units/mL formulation is dependent upon age, weight, clinical condition of the patient and the procedure being employed, an infusion rate of 3 mL/hour has been found to be satisfactory.

Periodic platelet counts; haematocrits and tests for occult blood in stool are recommended during the entire course of heparin therapy, regardless of the route of administration.

All injections in VIAFLEX plastic containers are intended for administration using sterile equipment. It is recommended that the intravenous administration apparatus be replaced at least every 24 hours.

OVERDOSAGE

Symptoms: Bleeding is the chief sign of heparin overdosage. Nosebleeds, blood in urine or tarry stools may be noted as the first sign of bleeding. Easy bruising or petechial formations may precede frank bleeding.

Treatment: Neutralization of heparin effect.

When clinical circumstances (bleeding) require reversal of heparinisation, protamine sulfate (1% solution) by slow infusion will neutralise heparin sodium. No more the 50mg should be administered, very slowly in any 10-minute period. Each mg of protamine sulfate neutralises approximately 100 USP heparin units. The amount of protamine required decreases over time as heparin is metabolised. Although the metabolism of heparin is complex, it may, for the purpose of choosing a protamine dose, be assumed to have a half-life of about 30 minutes after intravenous injection.

Administration of protamine sulfate can cause severe hypotensive and anaphylactoid reactions. Because fatal reactions often resembling anaphylaxis have been reported, the drug should be given only when resuscitation techniques and treatment of anaphylactoid shock are readily available.

For further information on the management of overdose, contact the Poisons Information Centre on 131126 (Australia) and consult the labelling of Protamine Sulfate Injection products.

PRESENTATION AND STORAGE CONDITIONS

Heparin Sodium in 0.9% Sodium Chloride Intravenous Infusion is supplied in Viaflex Plus plastic containers in the following sizes and concentrations (Table 1).
Table 1: Heparin sodium in 0.9% Sodium Chloride IV Infusion in Viaflex plastic bags

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of the composition expressed in Concentrations (g, mmol/Unit vol)</th>
<th>Osmolarity (mOsmol/L)</th>
<th>ARTG/ AUST R</th>
<th>Pack size (mL)</th>
</tr>
</thead>
</table>
| AHB0944 | **Active**: heparin sodium (2000 IU)
Excipients: sodium chloride (9, 154); citric acid 1.H₂O (0.4, 1.9); sodium phosphate-dibasic 12 H₂O (5.8, 16.2) and water for inject. to 1000 mL | 322 (350)§ | 19435 | 1000 (12’s) |
| AHB0953 | **Active**: heparin sodium (1000 IU)
Excipients: sodium chloride (4.5, 77), citric acid 1 H₂O (0.2, 0.95); sodium phosphate-dibasic 12 H₂O (2.9, 8.1) and water for inject. to 500 mL | 322 (350) | 19434 | 500 (18’s) |

§Note: the osmolarity is a calculated figure, whilst the figures in brackets are approximate molality (mOsmol/kg).

Storage: It is recommended that the products be stored below 30°C.

NAME AND ADDRESS OF THE SPONSOR

Baxter Healthcare Pty Ltd
1 Baxter Drive
Old Toongabbie NSW 2146

POISONS SCHEDULE OF THE MEDICINE
S4 (Prescription Medicine)

DATE OF FIRST INCLUSION ON THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS:
30 September 1991

DATE OF MOST RECENT AMENDMENT:
20 December 2013